CHAPTER 7

RELI ABI LI TY DATA ANALYSI S

| NTRODUCTI ON

It is inmportant to understand that for any realistic situation the true re-
liability characteristics of a system or fleet of systens, are never known

W th conplete certainty. This is true, of course, because we have not, iIn
fact, actually tested every systemin the total population and, practically
speaki ng, never could. To conpensate for this lack of total information, sone
formof sanpling is used to obtain information about the reliability char-
acteristics inherent in a systemand to quantify the level of uncertainty
about them O course, uncertainty continues to exist, and, as a consequence,
the reliability parameters can only be estimated. This chapter presents pro-
cedures which can be used to determne estimates for the various reliability
paraneters and to quantify the uncertainty inherent in these estimates.

These procedures support the analysis of data gathered in previously conducted
tests. Planning these tests to assure that adequate sanple sizes are obtained
Is the topic of Chapter 8. The objective of the data analysis effort is to
determne “best estimates” of system performance paraneters, such as reli-
ability, and to estimate the uncertainty associated with these “best estinmate”
val ues.

As in previous chapters, the case studies illustrate the application and
mani pul ati on of the mathematical concepts presented in the chapter text. Note

that in the typical Chapter 7 case study, vyouare provided the results of a

hypot heti cal test program and requested to develop a best estimte and con-
fidence interval for a reliability paraneter.

TYPES OF RELIABILITY TESTS

Fi xed Confiqguration and Gowh Tests

There are basically two types of reliability tests. One is a test of fixed
configuration. The other is the growth, or devel opnental, test, which centers
on reliability inprovenent seen as the configuration changes during the test.
There is not, however, a clean |ine between these two types. For the truly
fixed configuration test of continuously operated systens, any changes in
reliability are due to the inherent characteristics of the hardware and how it
i s [Jaintai ned. The analysis is done as a function of system age. If there
are design changes, they have to be considered on a separate basis, perhaps by

a data set for each configuration. See Chapter 10 for nore details on this
procedure.

For the growh type of test, the statistical nodels currently available assune
that all changes in reliability are attributable to the design changes. In
other words, they assune that the inherent reliability of the hardware is

constant.  The basic analysis for the growh type of test is done as a func-
tion of test exposure, rather than age, since it is test exPosur® that pre-

vides information for design inprovenents. The effects of system age can be
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dealt with separately, primarily by considering the failure nodes that are

obser ved. Chapter 9 summarizes the topic of reliability growh and il-
lustrates the associated analysis techniques.

Di screte and Continuous Tests

The nost el enentary consideration in beginning a data analysis is to deternine
whether_tesp tlnE I's measured continuously or discretely. Usuallv, this
distinction is quite obvious. An exanple of a test which can be anal yzed

either way is the followng. Suppose that a systemhas a durability require-
nment of 5000 hours and ten systens are available for testing. Each systemis

tested until it either experiences a durability failure or successfully com
pl etes the 5000 hour test period. W can let each systembe a test unit and
count as a failure any systemwhich fails before 5000 hours. This is a dis-

crete tine approach. Alternatively, we could let hours be our test units,
wth the total operating hours of the 10 -systens as the test exposure. This
I's a continuous time approach. Another exanple is the firing of an automatic
weapon, where many rounds are fired. This is a one-shot, discrete tinme test
if we are analyzing the ammunition, but could be considered a continuous tine
test if we are analyzing the gun or any of its conponents. General |y, when

either appreach is appropriate,_ nore information is. obtained fromthe

continuous tine approach.

DI SCRETE TI ME TESTI NG

Suppose that the systens under test are single-shot systenms. Each test unit
results in a distinguishable success or failure. As discussed in Chapter 5,
the binomal nodel wll be used to represent or nodel systemreliability when

di screte tinme or success/fail operations are of interest. It is assuned
t hroughout this discussion on discrete time testing that the conditions of a
bi nom al nodel are reasonably satisfied. (See Chapter 5.) W present data

anal ysis for success/fail (discrete) tests in the formof point estinmates,
confidence intervals, and tests of hypotheses.

Binomal Mdel: Point Estinmate of Failure Probability

Once the nunber of trials has been specified (see Chapter 8), all the inform-
tion contained in a binomal experinment rests in the nunber of failures that
occur. We use this information to make an assessnment or an estimate of the
true probability of failure, p. Thus, our best estimate of the value of pis
the ratio of the nunber of failures to the nunber of trials . This ratiois
cal l ed the sanple proportion of failures and is designated by the symbol p,
cal l ed p-hat. We use this sanple proportion of failures, p, to construct
confidence intervals for p and in testing hypotheses about p. By definition,
t hen

_ nunber of failures
nunber of trials

= sanpl e proportion of failures

>

p = best estimate for p

p = true proportion of failures
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Note that true systemreliability is the probability of successful operation,
therefore

R=1.-p, where Ris true systemreliability, and

R=1. p=best estimate of systemreliability.

It is inportant that the test designer and/or eval uator understand that a
point estimate for p represents a small portion of the information contained
In the data generated by a binom al experinent. Ot her useful information
I ncl udes upper and |ower confidence limts for the unknown paraneter, p.

Binom al Mdel: Confidence Limts for Failure Probability

Confidence |imts and their interpretation should play a vital role in de-
signing and eval uating a binom al experinment. Not only does the actual in-
terval relay a significant amount of information about the data, but also the
met hod of interval construction can aid the test designer in determning
adequate test exposure to neet his needs. An extensive discussion on the
I nterpretation of confidence intervals is given in Chapter 6.

Suppose that we observe “s” failures out of “n” trials in a binomal experi-
ment. This translates to a sanple proportion of failures equal to s/n and a
sanpl e proportion of successes equal to (n-s) /n. Tables of exact confidence
limts for the true proportion of failures for values of n less than or equal
to 30 are given in Appendix B, Table 4. As an exanple, suppose that n = 25
trials and s = 4 failures. A 90% upper confidence limt for p is 0.294. W
obtain this value using Appendix B, Table 4 wwth n = 25 in the colum | abel ed
90% upper Iimt and the row | abeled s = 4. For the sane data, a 98% con-
fidence interval is

0.034 < p <0.398.

In this case, the values are found in the columms | abeled 98% interval and the
row | abeled s = 4. Mre exanples using Table 4 are given in Case Study 7-3.

Binomal Mdel: Confidence Levels for Pre-Established Reliability Limts

|f, after conducting a test in which we observed s failures (c = n-s suc-
cesses) out of n trials, we wish to determ ne how confident we are that a
pre-established level of reliability (such as the MAV) has been net or ex-
ceeded, we nay use equation 7.1 bel ow

Let RL designate the desired pre-established level of reliability. Tofind
t he confidence that R has been net or exceeded, we evaluate the expression:

c~1

L(c- 1) kfo (;‘) RLku-RL)n'k (7.1)

Bn,R

|f we denote the value of this expression as 1 - «, then we are 100(1 ~®)%

confident that R >R,
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|f, on the other hand, we wsh to determ ne how confident we are that a pre-

established level of reliability (such as the SV) has not been attained, we
may use equation 7. 2.

Let Ry designate the desired pre-established level of reliability. To find

t he confi dence that RU has not been attained, we evaluate the expression:

C
C = n k. ‘k 7 2
Bn,RU( ) kzo(k) Ry (1-RU)n (7.2)

|f we denote the wvalue of this expression as a, then we are 100(1 - a)% con-
fident that R < Rj.

See Case Study 7-1 for an exanple of this technique.

The Greek letter g is used nunerous tines
t hroughout this chapter to represent a general -
| zed value or designation of “RISK.” In this
chapter, o is not necessarily to be interpreted
as producer’ s risk as in Chapters 6 and 8.

Approxi mate Binom al Confidence Limts (Normal Approximtion)

| f the nunber of failures and the number of successes both are greater than or
equal to 5, we can obtain approxinmate confidence linmts using the nornal

distribution. The approximate 100( 1-cY)% lower limt for p, the true propor-
tion of failures, is

P2 Py

p> b -2 50)/n , (7.3)

where p = s/n.  The approxi mate 100(1-u)% upper confidence linmt for pis

P <Py

P< ptzp(l-p)/n . (7.4)
The two-sided 100(1-u)% confidence limts for p are

< <
Pp <P <py

~

P - Zajzﬂlf’(l-f’)/n f_ P f’ + za/zJﬁ(l'ﬁ)/n . (7 5)

i
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Values for Z, and Z4/2 are obtained from Appendi x B, Table 2.

As an exanple, suppose that 5 failures in 30 trials occurred during a test.

An approximate 90% ((Y = 0.10) upper limt for the true proportion of failures
IS

Fal

p t zO.lOJE(l—ﬁ)/n .

Substituting n = 30, and p = 5/30 = 0.166, we obtain

0.166 + 2, J(0.166)(0.834)/30 .

‘he value “f .4 19 is determined using Appendix B, Table 2. Under the colum
| abel ed P(Z zJ%g we search the values until we find the nunber closest to
0.10, the value of a. The nunber in the colum | abeled Z Is the desired
value. In this case, for a = 0.10, z2, = 1.28. The upper limt is then

0.166 + 1.284(0.166)(0.834)/30 ,

whi ch reduces to 0.253. We are thus 90% confident that the true proportion of
failures is 0.253 or smaller.

See Case Study 7-3 for construction of confidence |imts using normal approxi-
mat i on.

Approxi mate Binom al Confidence Limts (Poi sson/ Exponential Approximation)

Wien the sanmple proportion of failures is snmall, and the nunber of trials is
reasonably large--at |east 30--we can obtain approximate confidence Iimts
using techniques described in the section on Exponential Mdel: Confidence

Intervals and Limts for MIBF. This is an especially useful technique for
situations involving very few failures in fairly large sanples. We use the
procedure for failure termnated testing wth the identifications: T "n (the
nunber of trials) and r = s (the nunber of failures). W obtain approximte
confidence limts for p, the probability of failure, by constructing confi-
dence limts for 6, the system MIBF. Because p and A are failure-oriented
paraneters and 6 is a success-oriented paranmeter (remenber that by definition
6 = 1/A), an approximte confidence Iimt for p is the reciprocal of the
confidence Iimt for 8. An inportant consequence of the reciprocity mentioned

above is that an upper confidence limt for 6 yields a |ower confidence Iimt
for p and vice versa.

Consi der the situation described in Chapter 6, where 3 failures out of 30
trials of a binom al experinent were observed. To construct an approxinate

90% confidence interval for the true proportion of failures, we let T be 30
and r be 3. The 95% confidence interval for 6 is

2T < B < 2T

7 A
Xa/2,2r X1-a/2,2r
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since T=n=30, r =s =3, and a = 0.05, we have

2(30) 2(30)
> < 8 <l
X0.025,6 “0.975, 6
2 2

Values . “0.025,6 and ‘0.975, 6 &€ obt ai ned from Appendi x B, Table 5. The

expl anation of how to extract these values is presented below in the section
entitled “Exponential Mddel: Confidence Intervals and Limts for MIBF." The

2 . )
val ues are i% 025,6 14. 46 and Xg 9756 - 1. 24, Thus the interval for 6 is

<h<

whi ch, upon sinplification, becones

4.15 < 8 < 48.39 .

Taking the reciprocals of the limts for 8, we have that the approxi mate 95%
confidence interval for the true proportion of failures is

0.021 < p < 0.241 .

Since reliability is 1- p, the approximte 95% confidence interval for system
reliability is

0.759 < R < 0.979 .

This statenent can also be interpreted as follows: W are 95% confi dent that
the true systemreliability is between 0.759 and 0. 979. This interval is
based on our test results where 3 out of 30 trials ended in failure.

See Case Study 7-2 for another exanple of this procedure.

Point Estimates and Confidence Limts for the Difference/Ratio of Proportions

Suppose that tests have been conducted on two different types of systens re-
sulting in sanple proportions of failures of ﬁl and ﬁz with sanple sizes of o,

and n,, respectively. The point estimates for the difference (p1 - Pz) and
ratio (pl/pz) of proportions are the difference and ratio of the sanple pro-
portions, i.e., ﬁl - ﬁz and ﬁllﬁz, respectively. W present the procedures

for determ ning confidence limts for the difference and for the ratio of the
two popul ation proportions (p1 and pz) using the nornal distribution. The ap-

proximte 100(1 - «)% lower confidence limt for the true difference in pro-
portions is

- > -
P; - Py 2 (py - Py)y

~ o~

Py - B, - 2P, (1-p)/n, + p,(1-p,)/n, .

| v
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The approximate 100 (1 - a)% upper confidence limt for the true difference in
proportions is

Py - By S (py - Pyly

~

<Py Byt z B, (1-p ) /0 * B,(1-B,)/n, .

The approximate 100(1 - «)% confidence interval for the true difference in
proportions is

(p1 - PZ)L <Py -py < (p1 - p?_)U

-~ - - _ x X -~ - < _
Py = Py - 2y V0 (1-p)) /0 + B, (1-p,)/n, S Py - P,

~

< p, - + S (1-5 + 5 (1-%
SPy TPy Yz Ve (1P ) /0yt B, (1-p,) /n,

Wth high reliability systens, it is sometinmes nore informative for conparing

two systems to look at the ratio of proportions of failures. As an exanple,
suppose that the true proportions of failures for two systens are 0.01 and
0.001. W can say that one systemis ten tinmes better than the other even
t hough the difference is a nere 0.009. An approximate 100(1 - )% | ower
confidence Iimt for the true ratio of proportions is

p,/Py 2 (py/p,)y,

~ ”~ ~ S A2
p,/P, 2 2,/P, - zﬁ,\/pl(l-pz)/ra-zp2 :

The approximte 100 (1 - a)% upper confidence limt for the true ratio of
proportions is

P,/p, < (py/P,)y

~ ~ ~ ~ .n.2
pllp2 < p1/p2 + za\/pl(l pz)/mzp2 .

The approxi mate 100 (1 - )% confidence interval for the true ratio of propor-
tions 1is

(Pl/Pz)L <py/p, < (p,/p,)y

~

Ll ~ A2

a~ }

A A ~ N ~2

In Case Study 7-4, we construct confidence lints for the difference and ratio
of popul ation proportions.
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CONTI NUQUS TI ME TESTI NG

Suppose the systens under test operate as a function of hours, kiloneters, or
ot her continuous measure. In such a case, the data are not solely success/
failure oriented. Generally, the times at which failures occur and the tine
i n operation without failures nust also be considered. These types of tests
are anal yzed by using a Poisson nodel. \Wen the failure rate remains constant
t hroughout the test, the exponential distribution describes the tines between
failures and provides all the information needed for the data analysis. For
the anal ysis presented in subsequent sections of this chapter, we wll assune
that the failure rate is constant. W present below a graphical procedure to
determne if that assunption is reasonable.

Continuous Time Testing: Failure Pattern Identification

When confronted with data from a continuous time test the analyzer should
first construct an average failure rate plot. The purpose of constructing an
average failure rate plot is to help the analyst determ ne whether the failure
rate 1s increasing, decreasing, or is constant. The type of failure rate plot
that will be described considers hardware that did not have significant design
changes made, so that changes in the failure rate are due primarily to the age
of the equipnent. (When substantial design changes are nade, there nmay be
reliability grow h. In that case, a different type of average failure rate
plot is used, which is based on cunulative test exposure rather than the age
of the equipnent.)

The average failure rate plot is constructed as fol |l ows:

1 Determ ne the | owest and hi ghest equi pnent ages which the test experience
covers. These need not be ages at which failures occurred. This estab-
| ishes the | ower and upper limts of the plot. For conveni ence, worKking
limts may be set at “round” nunbers above and bel ow the | ower and upper
limts , respectively.

2. Divide the interval enconpassed by the working limts into subintervals.
The subintervals need not be of equal size.

3. Count the nunber of failures in each subinterval. (A mninumof 5 fail-
ures per subinterval is desirable, though not absolutely necessary.)

4, Add up the hours (or mles, rounds, etc.) of operation within each sub-
I nterval .

b. Conpute the average failure rate for each subinterval by dividing the

nunmber of failures in the subinterval by the hours (or mles, rounds,
etc.) of operation in the subinterval.

6. Construct a graph, with the systemage (in hours, niles, rounds, etc.) on
the horizontal scale, and failure rate on the vertical scale. The aver-
age failure rates conputed for each subinterval are shown as horizontal
lines over the length of each subinterval.

1. |f the average failure rate plot has too nuch fluctuation to show any
kind of trend, reduce the nunber of subintervals and repeat steps 3
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t hrough 6. For very small amounts of data, it nmay be necessary to use
only two subintervals.

8. Fromthe final version of the average failure rate plot, judge whether
the failure rate trend remains constant, increases , or decreases as the
equi pnent ages. For small anmounts of data it may be difficult to nake
this judgnent. In any case, statistical tests for trend may be used.

9. |f the data are judged to have no trend, analyses based on the exponen-
tial distribution may generally be used with validity.

10. If the failure rate is judged to be increasing or decreasing, as a mni-
num a note to this effect should acconpany any anal yses based on the as-
sunption of exponential tines between failures. To anal yze data that
appear to have a trend nore explicitly, a non-honogeneous Poi sson process
may be fitted to the data. W do not present any analysis using a non-
honobgeneous Poi sson process in this chapter. |If the average failure rate
plot indicates that a constant failure rate assunption is unwarranted,
the data anal yst nay refer to a statistics text which covers the topic of
stochastic processes in depth to aid in his analysis.

11.  See Case Studies 7-5 and 7-6 for exanples of average failure rate plots.

Exponential Mdel: Point Estimte of MIBF

When data are judged to show a constant failure rate, the exponential distri-
bution may be used for data analysis. Exponential analysis does not require
the use of actual failure tines.

Not ati on T = total test exposure, the total hours, mles,
etc. , accunul ated anong all the itens included
in the sanmple

[ = nunmber of failures observed
6 = point estimte of MIBF
R(x) = point estimate of reliability for a specified
exposure, X
A = the point estimate of the failure rate
For nul as
5 = I
o = (7.6)
Exponential Mddel: Point Estimates of Reliability and Failure Rate

Point estimates of reliability and failure rate may be devel oped from poi nt
estimates of MIBF as foll ows:

i (x) = o X1 (7.7)

7-9



A= 1/86

(7.8)

See Case Studies 7-7, 7-8, and 7-9 for illustrations of conputing point esti-

mat es.

Exponential Mdel: Confidence Intervals and Limts for MIBF

Not at i on T

QL
I

6 = MIBF

R(x) = reliability for
a period x

A=failure rate

total test exposure, the total hours, miles,
etc. , accunul ated anong all the itens included
in the sanple

t he nunber of failures observed

a chi-square value, identified by tw sub-
scripts. To determ ne a chi-square val ue using
Appendi x B, Table 5, we use the first subscript,
a function of the risk (a), to indicate the
colum, and the second subscript, a function of
the nunber of failures (r), to indicate the row

the risk that a confidence statenent is in
error. Note:  The synbol a used here does not
necessarily represent the producer’s risk as
di scussed in Chapter 6.

no subscript = true
but unknown val ue
Used in
conj unction L subscri pt
Wi th

lower limt

U subscript = upper limt
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the fornul as
of confidence.)

Formul as (All

100(1-a% |evel

listed below w |

yield statenents at the

Confidence

Limits

Time Term nat ed

When the test exposure ends at a tine
other than a failure occurrence, use
Appendi x B, Table 8a multipliers or
the follow ng formlas.

Interval for specified confidence
| evel
BL <8 <8y
2T 2T
> <8< 5 (7.9a)
Xa/2,2r+2 X1-0/2,2r
See Case Studies 7-7 and 7-8.
Lower limt for specified confi-
dence |evel
6 > BL
8 > — 2 — (7.10a)
X, 2r+2
Upper limt for specified confi-
dence | evel
B < 65
6 < _5_22;__ (7.11a)
X1-a,2r

See Case Study 7-7,

Failure Term nated

When the test exposure ends at a
failure occurrence, use Appendi x
B, Table 8 nultipliers or the
follow ng fornul as.

Interval for specified confidence
| evel
6; < 6 < 8y
2T 2T
——— <8< (7.9b)
Xu/2,2r x1--a/2,2r

See Case Study 7-9.

Lower limt for specified confi-
dence 1level

6> 6

6 >

2 (7.10b)

Upper Iimt for specified confi-
dence | evel

X1--(1,2r

See Case Study 7-9.
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Confidence That A Specific Lower Limt Has Been Attained

Time Term nat ed

Confidence that a specific |ower

limt, BL, has been attai ned
2 _ 2T
Xy, 2r42 = 8, (7.12a)

Sear ch Xz tables in row | abel ed
2r + 2 for the nunerical val ue,
27/6, , and find the associ ated

value for «.

Confi dence t hat

>
6 > 8,

is 100(1-a)%

The val ue, a, nay al so be
determ ned in closed form
as follows;

r (T/eL)k e (T/81)
a= 2 k!
k=0

(7. 13a)

(Use Appendix B, Table 3 or
Chart 1 to evaluate this ex-
pression.)

Confi dence t hat

6 > 6,

is 100(1-a)%

See Case Studies 7-7 and 7-8.

Fai l ure Term nat ed

Confidence that a specific |ower

limt, BL, has been attained
2 _o2r
Xa,Zr 5 (7.12b)

Search X tables in row | abel ed
2r for the nunerical val ue,
2T/0, ., and find the associated
valué for «.

Confi dence t hat

6 > 6

s 100(1-CY)%

The val ue, a, nay al so be
determned in closed form as
foll ows:

r-1 (T/BL)k e~ (T/8p)
o= 2
k=0 k!

(7.13b)

(Use Appendix B, Table 3 or
Chart 1 to evaluate this ex-
pression.)

Confi dence t hat

6 > 6,

i's 100(1-a) %

See Case Study 7-9.
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Confidence That A Specific Upper Limt Has Not Been Attained

Time Term nat ed

Confidence that a specified upper
limt, eU, has not been attai ned

2 _ 21

xl-a,Zr - BU (7. 14a)

2 .
Search X tables in the row | abel ed
2r for the nunerical value, 2T/6 ,

and find the associated value for 1-a.

Confi dence that

6 < 8,

s 100(1-CY)%

The value a may al so be determ ned
in closed formusing the follow ng
equat i on:

_r;l (T/GU)k e (T/8y)

1-a =
k=0 k!

(7.15a)

(Use Appendix B, Table 3 or
Chart 1 to evaluate this ex-
pression.)

Confi dence that

6 < 6

is 100(1-a)%.

See Case Study 7-7.

Fai l ure Term nat ed

Confi dence that a specified

upper limt, 6y has not been
attai ned
2 _ 2T
xl-a,zr = BU (7.14b)

Search X tables in the row
| abel ed 2r for the nunerical
value , 2T/6.,, and find the
associate&JvaIue for 1-a.

Confi dence that

8 < 8,

is 100(1-a)%
The val ue o nmay also be deter-

mned in closed formusing the
follow ng equati on:

r-1 (178" e (T

1"& - Z k; (7.15b)
k=0 )

(Use Appendix B, Table 3 or

Chart 1 to evaluate this ex-

pression.)

Confi dence that

6 < 8

is 100(1-Q %

See Case Study 7-9.
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Exponential Mdel: Confidence Intervals and Limts for Reliability and Fail -
ure Rate

Intervals for reliability and failure rate with 100(1-a)% confi dence are

R (x) < R(x) < Ry(x)

~(x/6.) -(x/8.)
e Y <Rx <e (7.16)
and
M AN
1/6, < A<lle (7.17)

wher e BL and Ou are the lower and upper limts of the 100(1-a)% confidence
interval for 6 (MTBF).

Lower limit for reliability and upper linit for failure rate with 100(1-a)%
confidence are

R(x) > RL(X)

- (x/el)
R(x) >_e (7.18)
and
A <Ay
A< 1/6L (7.19)

wher e BL s the 100(1-0)% | ower confidence limt for 6 (MIBF).

Upper Iimt for reliability and lower Iimt for failure rate with 100(1-a)%
confidence are

R(x) < Ry(x)

- (x/ eu)
R(x) <_e (7.20)
and
)\ZAL
A > 1/8U (7.21)

Wher e BU Is the 100(1-a)% upper confidence [imt for o (MIBF).
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CASE STUDY NO. 7-1

Backgr ound

The engine for a light arnored vehicle nmust have a 0.90 probability of com
pleting 100,000 mles without an operational durability failure. In order to
evaluate durability, four vehicles are tested. Each vehicle is operated until
a durability failure occurs or until it successfully conpletes 100,000 mles
of operation w thout experiencing an operational durability failure.

Det er m ne

1. |f no failures occur, what confidence do we have that the requirenent has
been net or exceeded?

2. If 1 failure occurs, what confidence do we have that the probability is
at least 0.75? -

3. |f 2 failures occur, what confidence do we have that the probability is
at |east 0.507?

Sol ution

1 Since no failures have occurred, the nunber of successes is 4. W use

equation 7.1 with

n=4
S=4
RL = 0. 90.

The confidence is:

kgo(ﬁ)(o.g)k(o.1)4‘k = (2)€0.9)°(0. 1)+ (?)(0.9)1(0.1)3

; (g)(0.9)2(0.1)2 + (;)(0.9)3(0-1)1

(1) (0.0001) + (4)(0.0009) + (6)(0.0081) + (4)(0.0729)
= 0.0001 + 0.0036 + 0.0486 + 0.2916 = 0. 3439.

We are 34%confident that the reliability neets or exceeds 0.90.
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2. The nunber of successes is 3. We use equation 7.1 wth

n=4
S=3
RL = 0. 75.

The confidence is:
2

kgo(“)(o. 75) (0. 25)“* = 0.2617.

W are 26% confident that the reliability meets or exceeds 0. 75.

3. The nunber of successes is 2. W use equation 7.1 with
n=4
S=2
LS 0.5.

The confidence is:

A
2 ()

W are 31%confident that the reliability neets or exceeds 0.50.

= 0. 3125.
(c.s)k(o.s)4 K

Comment ary

It is interesting to note that with the small sanple size, we can only reach
34% confidence that the requirenent has been nmet or exceeded, even though we
encountered zero failures. In many cases, durability requirenments are im
possi bl e to denonstrate at high confidence |evels because sanple sizes are
al nost al ways constrained to be small.
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CASE STUDY NO. 7-2

Backgr ound

A | auncher for a nediumrange anti-tank nmissile has been tested. of 100
mssiles, 95 were launched successfully.

Det erm ne
1. Point estimate of reliability.
2. Construct a 90% upper limt on the true proportion of failures using the

Poi sson/ exponential approxi mation.

3. Construct an 80% confidence interval on the true reliability using the
Poi sson/ exponential approxi mation.

Sol ution

1 Point estimate of p, the true proportion of failures is 5/ 100 = 0. 05.
Consequently, the point estimate for the reliability, R 1is

fa

R=1-pp=1- 0.05 = 0.95.

2. W set T=n=I00, r= s =5, and @ = 0.10. The approxi mate 90% upper
limt for p, the true proportion of failures, is obtained by first determ ning
a 90% lower limt for 0. The 90% lower limt for 6 1is

6 > 6,

| v

> 2(100)
— 15.99

> 12.51.

Consequently, the 90% upper limt for pis
P < Py

1

oL

|/

|~

12.51

< 0.08.
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Thus, we are 90% confident that the true proportion of failures does not
exceed 0. 08.

3. Weset  T=n=l| OO, r=s =5, and a = 0.20. The 80%interval for R the

| auncher reliability, is obtained by first determ ning an 80% interval for 8.
The 80% interval for 6is

6, <6 <8

L= U
2T 27
2 2915
Xa/2,2r X1-a/2,2r
2(100) 4  2(100)
18.31 -7 L 3. 04

10.92 < 8 < 50.76.

Consequently, an 80%interval for p, the true proportion of failures is

Pp S P <Py
1 1
8. 2P < g
U L
1 1
50.76 ~ P < 10,902

0.02 < p <0.09.
The 80% interval for the reliability, R is

< <
R, <R <Ry

| A

R

P A

1 - py 1-pp

1- 0.09 <R<1-0.01
0.91 < R < 0.98.

We are 80% confident that the true launcher reliability is between 0.91 and
0. 98.
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CASE STUDY NO. 7-3

Backgr ound

A new mssile system has been under devel opnent and is ready for production.
The contract specifies that the producer nust denonstrate a proportion of
successes at |least equal to 0.85 (SV) . The user will accept as a mninum a
denonstration of at least 0.70 (MAV) . An initial production test of 30 fir-
i ngs was conducted for the mssile system and 6 mssiles fired inproperly.

Det er m ne

1 What is our best single value estimate for the true proportion of fail-
ures?

2. Construct exact 90% 95% and 99 .5% | ower confidence limts for the true

proportion of failures.

3. Construct exact 90% 95% and 99. 5% upper confidence limts for the true
proportion of failures.

4, Construct approxi mate 60% 70% 80% and 90% two-sided confidence limts

for the true proportion of failures, wusing the normal approximtion to the
bi nom al .

. Provide an accept/reject criterion which permts the greatest nunber of
acceptable failures which still neets a consuner’ s risk of no nore than 10%
What is the producer’ s risk for this criterion? |s the system acceptable
under this criterion?

6. | ncrease the sanple size to 40 and 50. Provi de an accept/reject
criterion to neet a producer’ s risk of 15% \What is the consuner’ s risk for
each criterion?

Sol uti ons

1 Point estimate: 6/30 = 0. 20. This corresponds to an 80%reliability.
2. Lower confidence limts: Use Appendix B, Table 4.

a. 90% Lower [imt, n =30, s = 6.
Lower limt = 0.109.

b. 95% Lower imt, n =30, s = 6.
Lower [imt = 0.091.

1|
o

C. 99.5% Lower |imt, n = 30, s
Lower limt = 0.054.

Note that the three solutions above are |ower confidence limts on the true

proportion of failures, i.e. , lower limts on unreliability. | f we subtract
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any of the lower limts from1l, we obtain an upper limt on reliability. To
convert the 90% Ilower limt on unreliability (0.109) to an upper limit on
reliability, we subtract it from1i,i.e., 1- 0.1 = ().891. This neans that
we are 90% confident that the true reliability does not exceed 0.891.

3. Upper confidence limts: Use Appendix B, Table 4.

a. 90% Upper Iimt, n = 30, s = 6.
Upper limt = 0.325.

b. 95% Upper limt, n =30,s = 6.
Upper limt = 0.357.

C. 99. 5% Upper Iimt, n = 30, s-6.
Upper ITimt = 0.443.

Note that the three solutions above are upper confidence limts on the true

proportion of failures, i.e., upper limts on unreliability. To obtain a
lower limt on reliability, we subtract the corresponding upper limit on
unreliability from 1. The 90% lower Ilimt on reliability is thus: 1 -

0.325 = 0.675. This neans that we are 90% confident that the true reliability
exceeds 0.675.

4. Approximate two-sided .limits (normal), for p = s/n = 6/30 = 0.2:

Lower limt = p - ZG/ZJﬁ(l-E)/n
Upper limt = p + zu/ZJp(l-p)/n

Note that the values for Z o can be found in Appendix B, Table 2, To use the

table for two-sided limts, we convert the confidence percentage (say 60% to
a value for a(0.40), divide that value by 2(a¢/2 = 0.20), and l|locate the val ue

for Za1o (20.20::0‘84)'
0 = 0.40 = =
a. 60% o zﬁ[/2 ‘0. 20 0.84
Lower Iimt = 0.139
Upper limt = 0.261
9 = 0.30 3 =
b. 70% o za/?.“ 0 15 - 1.04
Lower limt = 0.124
Upper Iimt = 0.276
0 — -
C. 80% o = 0.20 a/2 "'0.10 ~ 1.28
Lower [imt = 0.107
Upper Iimt = 0.293



90% «a =0.10 z = = 1. 645

a/2 0.05
Lower limt = 0.080
Upper limt = 0.320

Use Appendi x B, Table 1, n = 30. The probability of 5 or fewer
failures when p is 0.3 is 0.0766. (Recall that p = 0.3 corresponds
to areliability of 0.7. ) The probability of 6 or fewer failures
when p is 0.3 is 0.1595. Because the consuner’ s risk is not to
exceed 10% we nust nake our decision criterion to accept with 5 or
fewer failures and reject with nore than 5 failures. The decision
criterion to accept with 6 or fewer failures results in a consuner’s
risk of 15.95% which exceeds the requirenent of a 10% consuner’s
risk. Note that the actual consuner’ s risk for the criterion to
accept with 5 or fewer failures is 7.66%

Use Appendix B, Table 1, n = 30. The producer’ s risk is the prob-
ability of rejecting the systemwhen it has nmet the specification of
0.15 proportion of failures (i.e. , areliability of 0.85) . We
reject the systemif 6 or nore failures occur. The probability of 6
or nore failures is the difference between 1 and the probability of
5 or fewer failures. The probability of 5 or fewer failures when p

is 0.15 is 0.7106. Consequently, the producer’'s risk is 1 - 0.7106
or 0.2894 (28.94% .

The systemis not acceptable because in fact nore than 5 failures
occurred.

Appendi x B, Table 1, n = 40, p = 0. 15. Producer’ s risk nmust not
exceed O 15.

I P(r or fewer failures) P(r+l or nore failures)
1 0. 7559 0. 2441
8 0. 8646 0. 1354

The criterion is to reject if 9 or nore failures occur; otherw se,
accept.

The consumer’ s risk, the probability of accepting the system when,
infact, it has fallen below the MAV of 0.7, is the probability that
8 or fewer failures occur when the true proportion of failures, P
is 0.3. This value is 0.1110. Thus, there is an 11. 1% chance of
accepting a bad systemwth this plan.

Appendi x B, Table 1, n = 50, p = 0.15. Producer’s risk nust not
exceed O 15.

L P(r or fewer failures) P(r+l or nore fail ures)
9 0.7911 0. 2089
10 0. 8801 0.1199
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The criterion is to reject if 11 or nore failures occur; otherw se,
accept.

The consunmer’ s risk (note above definition) is the probability that
10 or fewer failures occur when p is 0.3. This value is 0.0789.

Thus , there is a 7 .89% chance of accepting a bad systemw th this
pl an.

Note that for a fixed producer’s risk (approximately 13% , the
consuner’s risk decreases as the sanple size increases. An | n-
creased sanple size will also result in a decreased producer’s risk
when the consunmer’s risk is held approximtely constant.
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CASE STUDY NO. 7-4

Backgr ound

Two contractors are conpeting for a contract to produce an el ectroni c guidance
system Twenty-five units from Contractor | and thirty units from Con-
tractor 2 have been tested. The results of the test are: Contractor 1 had 2
failures, Contractor 2 had 7 failures.

Det er m ne

1. What is the point estimate of the difference in the true proportions of
failures for the two contractors?

2. VWhat is the point estimate of the ratio of the true proportions of fail-
ures for the two contractors?

3. Construct an approximate 90% | ower confidence limt for the difference in
the true proportions.

4, Construct an approximte 90% | ower confidence Iimt for the ratio of the
true proportions.

5. What confidence do we have that Contractor 1's systemis at |east twce
as bad as Contractor 2's? At |east 50% worse than Contractor 2's?

Sol utions

1. ﬁl - ﬁz = 7/30 - 2/25 = 0.233 - 0.080 = 0.153.

2. P,/p, = 7/30 + 2/25 = (7)(25)/2(30) = 2.91.

3. Lower limt = ﬁl " Py - quEi(l'ﬁl)/nl + p,(1-p,)/n,

= 0. 153 - qu(0.233)(0.767)/30 + (0.08)(0.92)/25

For a 90% | ower limit, o = 0.10 and z, = 1. 28. (See Appendix B, Table 2.)

The lower limt for the difference in true proportions is 0.031. This neans
that we are 90% confident that the difference in the true proportions of fail-
ures is at least 0.031.

~ ~ ~ -~ ’\2
p1/p2 - za\/pl(l-pz)/nzp2

4, Lower limit

2.91 - 2, V(0.233) (0.92)/25(0.08)2 .
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For a 90% lower Iimt, a = 0.10 and 2, = 1.28. The lower limt is thus 1.43.

This neans that we are 90% confident that Contractor 1's systemis 1.43 tines
worse than Contractor 2's system

5. To find the confidence that Contractor 1's systemis at |east tw ce as
bad as Contractor 2's, we nust find the confidence associated with a
lower limt of 2 for the ratio. Since, by definition, the |ower limit is

~ -~ ”~ ~ A2
plfpz - zm\/;)l(l-pz)/nzp2 .

We set this expression equal to 2, and solve for z, to obtain

1y~ B/, - 20/Vh (1) /n, B2 -

Substituting 0.233 for ﬁl, 0.08 for ﬁz, and 25 for n, we have

z = 0.788 .
Ct

We ook in Appendix B, Table 2 to find the value of a which corresponds to z,
= 0. 788. Since, by definition, p(z > za) = «, the desired value of ais
located under the colum labeled P(Z >z ). Thus the value of ais 0.215.

This represents a 100(1-(Y)% = 78.5% | ower confidence limt, so we are 78.5%

confident that Contractor 1's systemis at least twice as bad as Con
tractor 2's.

To find the confidence that Contractor 1's systemis at |east 50% worse than
Contractor 2's, we solve the follow ng equation for Z

aA A - . 2
P1/P2 za\/pl(l-p2)/n2p2 = 1.5 .

The solution is;

= -~ o~ -~ g <y re._?.
1y~ B/B, - 1.5)VB (15, /m
Substituting 0.233 for ﬁ1,0.08 for ﬁz,and 25 for n, we have

z =1.22 .
o
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This corresponds to an a of 0.1112, so we are 88.88% confident that Contrac-
tor 1's systemis at |east 50% worse than Contractor 2's.
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CASE STUDY NO. 7-5

Backgr ound

Six electronic systens were tested. Al systems had the same configuration,
and no design changes were introduced during the test. The test experience is
tabul ated bel ow.

System Age System Age System Age
at Start of at Failure(s) at End of
System Test, Hrs. H's. Test, Hrs.
1 0 13, 37, 60 275
2 75 154 290
3 0 73 290
4 150 190, 218 270
5 0 3, 52, 227 260
6 0 39, 166, 167, 209 260
Det erm ne

| s exponential data analysis appropriate for this data set?

Sol ution

An average failure rate plot will be used to determne if there is a trend to

the data. The follow ng graph, although not a necessary part of the analysis,
s included to aid visualization of the data.

SYSTEM I d o o

SYSTEM 3 o

SYSTEM 4

|
{
1
[
SYSTEM 2 | ; o
|
|
I
]
}
|
|
|

SYSTEM 5 |@ o |

I
!
)
|
|
|
|
|
|
|
|
|
!
|
I
|
I

SYSTEM 6 0

|

|

I |

i |
0 100 200 3
SYSTEM AGE, HOURS

The data will be broken down into three equal intervals. The steps involved
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in arriving at the average failure rate for each interval are contained in the
follow ng table.

Aver age
| nt erval Fai | ures Operating Hours Failure Rate
0- 1oo 1 425 71425 = 0.0165
100- 200 4 550 4/ 550 = 0.0073
200- 300 3 445 3/ 445 = 0.0067
These average failure rates are plotted on the follow ng graph.
0.020 | =
:
3
>
® 0.010
:
W 0.005
z
>
P
° 00 200 300

SYSTEM AGE, HOURS

The average failure rate plot suggests very strongly that there is a decreas-
ing failure rate as the system ages, and exponential data analysis should not

be used unless, at a mnimum a caveat about the decreasing failure rate is
i ncl uded.

Comment ary

1 Al though this is a fictional data set, the pattern to the data is fre-
quent|y observed in real data sets.

2. For a data set of this type, it is generally useful to consider the

actual failure types and corrective actions encountered. This tends to
clarify how permanent the high initial failure rate m ght be.
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CASE STUDY NO. 7-6

Backgr ound

Three devel opnental vehicles were operated under testconditions that closely
mat ched the operational node summary and mission profile for the system All
vehicles had the sane physical configuration. Only one relatively mnor
desi gn change was introduced to the test vehicles during the test. Scoring of
_test incidents determined that there were 7 operational-mssion failures. ‘The
follow ng table displays the operational mssion failure data.

Vehi cl e Qdonet er Odonet er Odonet er
Nunber at Start(km at Fail ure at End (km
1 0 None 6, 147
2 0 3,721; 6,121; 6,175 11, 000
9,002
3 0 216; 561; 2,804 5,012
Det er m ne

| s exponential data analysis appropriate for this data set?

Sol uti on

An average failure rate plot will be used to determne if there is a trend to
the data. Three equal intervals will (arbitrarily) be used.

| nt er val Fai |l ures Ki |l oneters Average Failure Rate
0- 4, 000 4 12.000 4/12. 000 = 0.00033
4, 000- 8, 000 2 7,159 2/7,159 = 0.00028
8, 000- 12, 000 1 3, 000 1/ 3,000 = 0.00033

These average failure rates are plotted on the follow ng graph.

0.00040 p—

0.00030

0.00020 |-

FAILURE RATE, OMF/

0.00010 }

AVERAGE

0 4,000 8,000 | 2,000
ODOMETER READING (km)
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Since the average failure rate plot is essentially horizontal, there is
virtually no evidence of trend in the data, and exponential data analysis
procedures may be used.

Coment ary

For large data sets , the average failure rate plot gives a very precise
picture of the actual failure rate pattern. For small data sets, such as this
one, chance plays a very heavy role. For exanple, in this case we observed
one failure in the last interval. Just one nmore, or one less failure in this
i nterval would nmake a drastic difference in the observed average failure rate.
More formal trend tests address whether such variations could reasonably be
due to chance al one.
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CASE STUDY NO. 7-7

Backgr ound

The vehicle system di scussed in Case Study 7-6 has a mssion duration of 100
kilonmeters. The user has stated a m ni num accept abl e val ue (Mav) of 2, 000
mean kilonmeters between operational mission failure (MKBOMF) and the con-
tractual reliability requirenment is equivalent to a 4,000 MKBOMF specified
value (SVv) . The analysis in Case Study 7-6 showed no trend to the data. The

test gave 22,159 km of exposure, and 7 operational mission failures were
obser ved.

Det er m ne

1 Point estimate of MKBOMF, mission reliability and failure rate.

2 80% confidence interval for MKBOMF and mssion reliability.

3. 80% | ower confidence limt for MKBOMF.

4, 80% upper confidence limt for MKBOMF.

5 What confidence do we have that the MAV has been net or exceeded?
6 What confidence do we have that the SV has not been obtained?

.

f

. Does the statistical evidence suggest that the reliability is satis-
actory, or not?

Sol utions

Because Case Study 7-6 gave no evidence of trend, exponential data analysis
procedures will be used. Note that they are all based on test exposure, T °
22,159 kilometers, and number of failures, r = 7. Actual odoneter readings at
failure need not be considered, except to note that the test exposure is

“time” termnated.
1. Point estinmates of 0, R(100, and A.
a. Apply equation 7.6

6 = % = 217&9 = 3165. 6 MKBOMF

Convert to mssion reliability using equation 7.7:

ﬁ(x) _ e-X/6

- 100/ 3165. 6 :6-0.0316

R(100) = = 0.969

Convert to failure rate using equation 7.8:

_ 1 _ -
= 3165 6 - 0.000316 failures per km.

b. Use a reliability conputer.
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The next
using the reliability conputer.
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2. An 80% confidence interval for 6 and reliability for a 100-kilometer
m ssion R(100.

d.

Using Table 8, Appendix B we obtain the confidence limt nultipliers

for the case of 7 failures and 80% confidence interval, i.e., 90%
upper and 90% | ower confidence |imts. These nultipliers are 0.665
and 2.797 for the 90% |ower and upper confidence lints

respectively. Note we use Table 8a because this is a kiloneters
(i.e., tine) termnated test.

6, = multiplier (8) = (0.595)(3165.6) = 1883.5 MKBOMF

(g = multiplier (8) = (1.797)(3165.6) = 5688.6 MKBOMF

We are therefore 80% confident that
1883.5 < 8 < 5688. 6 MKBOMF
Using inequality 7.9a, we find, for a = 0. 20,
2T 2T

2 9 <3
Xa/2, 2042 X1-0/2,2r

|/\

2(22, 159) 2(22, 159)

2 L85
X0.10,16 *0. 90, 14

: : : 2
Using Appendix B, Table 5 for the appropriate X values, we have

44,318
23. 55

44,318
7.79

<o <

W are 80% confident that
1881.9 < 8 < 5689. 0 MKBOMF

In other words, we are reasonably sure that the MKBOMF is not |ess
than 1881.9, nor greater than 5689. 0.

Converting to mssion reliability using inequality 7.16, we find
e-X/eL ﬁ R(x) E e"X/BU

o 100/ 1881.9 - 100/ 5689. 0

< R(100) < e
W are 80% confi dent that

0.948 < R(100) < 0. 983
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Comment ary

The reliability conputer cannot be used for confidence intervals since it does

not have a capability for upper limts.

3. An 80% | ower confidence [imt for 6.

d.

C.

Use Table 8a, Appendix B to find the multiplier for

confidence Iimt with 7 failures.
‘L
Therefore, we are 80% confident that
6 > 2165. 3 MKBOMF
Using inequality 7.10a, we find
2T

2
Xa, 2r+2

6 >

2(22, 159)
2
0.

07

20, 16
: : 2
Using Appendix B, Table 5 for the X val ue,

> 44, 318

O _ 20 47

We are 80% confident that

6 > 2165. 0 MKBOMF

Using a reliability conputer, we find
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4. An 80% upper confidence limt for O.

a. Use Table 8a, Appendix B to find the multiplier for an 80% upper
confidence Iimt wth 7 failures.

8, = multiplier (8) = (1.479)(3165.6) = 4681.9 MKBOMF

Therefore, we are 80% confi dent that
6 < 4681. 9 MKBOMF
b. Using inequality 7.11, we find
2T

2
1-a,2r

8 <
X
¢ 2(22,159)

- 2
*0.80,14

§

. : 2 .
Using Appendix B, Table 5 for the X value, we find

¢ 44,318

9 < 927

W are 80% confident that
8 < 4679. 8 MKBOMF

Comment ary

The reliability conmputer does not have a capability for upper limts.
b. \What confidence do we have that 6 > 2, 0007

a. Usi ng equation 7.12a, we find

) 2T
X0!,2r+2 - BL
2 2(22,159) _
(x,16 © T 2000 " 22159

Searching Appendix B, Table 5 in the row | abeled 16 for a val ue of
22.159, we find values of 20.47 and 23.55. Interpolating, we obtain
o = 0.14. Confidence is 100(1-cY)% = 100(1-0.14)% We are approxi-
mately 86% confident that

0 > 2000 MKBOMF
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b. Using equation 7.13a, we find

, (T/BL)k e-(T/GL)

a = 2
k=0 k!
22,159
= 22"~ =
T/6; = =5255= = 11.0795
r =7
o - (11.0795)% 110795 (g1 g795)le711-0795
B +
1 1
, (11.0795)2e711-0795  (11.0795)%e 7110795
: ;
, (11.0795)%711-0795 (17 0795)%¢711-0793
2 4 120
-11.0795

(11.0795)% 11-0795 X (11.0795) e
720 5040

= 0.0000 + 0.0002 + 0.0009 + 0.0035 + 0.0097
+ 0.0215 + 0.0396 + 0.0627
= 0.1381
We are 86.2% confident that
6 > 2000 MKBOMF
6. \Wat confidence do we have that 6 < 4,000?

The confidence that 8 < 4,000 is the same as the confidence that 6 < 4, 000.
The former statenent is easier to interpret, gjthough the latter is the usual
expressi on.

a. Using equation 7.14a, we find

> _o1
X1-a,2r BU

2 2(22,159) _
X1-0, 14 = Tao00 7108
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Searching Appendix B, Table 5 in the row |abeled 14 for a val ue of
11.08, we find values of 10.16 and 13.34. |nterpolating, we obtain
|-a 2 0.68. Confidence is 1001-(Y)% = 100(0.68)% We are approxi-
mat el y 68% confident that

8< 4000 MKBOMF

b. Usi ng equation 7.15, we obtain

r-1 (170" e {T/%)
l-o0 = 3 n
k=0 !
1/6, = 222222 = 5.53975
r-1=26
1.y - (5.53975)0e-5"53975  (5.53975) e 27277
b 1

, (5.53975)% 2% (5.53975) 3e- 5- 53975

? 3
. (5.53975)%™>5%97> (5 53975) 5e-5- 53975
24 120
+ (5.53975)%e72-23973
720

= 0.0039 + 0.0218 + 0.0603 + 0.1113 + 0.1541 + 0.1708

+ 0. 1577
= 0.6798
We are 68% confident that
6 < 4000 MKBOMF

1. Does the reliability appear satisfactory?

We are 86% confident that the user’s needs have been nmet, but only 68% con
fident that contractual obligations were not net. There is stronger evidence
that the reliability is satisfactory than not. If many nore failures were
experienced, we would have |ow confidence that the user’s needs werenet, and
we woul d al so have higher confidence that the contractual obligations were not
met, suggesting that the reliability is not satisfactory from both
st andpoi nt s.
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CASE STUDY NO. 7-8

Backgr ound

An avionics system has the following reliability requirements: the m ninum
accept abl e val ue (MAV) = 150 hrs. MIBF, and the specified value (SV) = 450
hrs. MTBF. Three of these systens were tested for 100 hours (each) under test

conditions that closely duplicated the expected operational environnent. No
failures were observed during this test.

Det er m ne

An 80% | ower confidence limt for MIBF, and the confidence that the MAV has
been attail ned.

Comment ary

The case of a test wth zero failures has sone interesting features. Wth no
failures, there is no way to determne the type of failure pattern. [If we
have sone assurance that the equipnment will not degrade as it ages, we can
make a constant failure rate assunption, which, in turn, permts an ex-

ponential data analysis.

|f we attenpt to obtain a point estimate of 9, we get:

0 = — = = = indeterninate

I
r

ol

Simlarly, the upper limt is indetermnate. W can, however, obtain |ower
confidence limts.

Sol uti ons

1. 80% | ower confidence limt for 9.

a. Note that the technique of using the multipliers from Table 8,
Appendi x B, cannot be used for the case of zero failures.

b. Using inequality 7.10a, we f i nd
2T
2
‘a, 2rt2

6 >

We have in this case, T =300, «a = 0.2 and r = 0, so

> 2(300)
-2
X0.2,2

0

7-39



Using Appendix B, Table 5 for the x2 val ue, we find

> 600

O _ 32

W are 80% confident that 8 > 186.3 hrs MIBF

b. Using a reliability conputer, we find
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2. Confidence that 8 > 150

a. Asnoted in part 1 of this problem Table 8 cannot be used for the
case of zero failures.

b. Usi ng equation 7.12a, we find

2 . 2T
Ay, 2r+2 6,

2 2(300) _
Xu,2 ) Iéﬁ__l =40

Searching Appendix B, Table 5 in the row labeled 2 for a val ue of
4.0, we find values of 3.22 and 4.60. |Interpolating, we obtain a =

.13, Confidence is 100(1-a)% = 100(1-0.13)% W are approxi mately
87% confident that

§ > 150 hrs MIBF

C. Using equation 7.13a, we find

r (/e e T8
o= 2 KT
k=0

For r =0, this sinplifies to
o = e_(T/eL)

In this case,

a = e (300/150) _ =2 _ ¢

W are 86.5% confident that

8 > 150 hrs MIBF
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CASE STUDY NO. 7-9

Backgr ound

A systemis being tested using test plan XIIC from Appendi x B, Table 6. The
upper test value (SV) is 100 hours MTBF, and the | ower test value (MAV) is 50
hours MIBF. The required test duration is 940 hours, and 14 failures are
rej ectabl e. The source 'of data for this test plan is not relevant for this
case study, but is presented here for future reference. Chapter 8 contains
detail ed discussions on the formation and use of this and other test plans.

The seventh failure has just occurred after only 57 hours of test exposure.
Because of the excessive nunber of failures , an evaluation is to be done at

this point in the test. Prelimnary analysis of the data showed no evidence
of trend, i.e., failure rate appeared constant,

Det er m ne

. Poi nt estimte of MTBF.

2. 80% confidence interval for MTBF.

3. 80% | ower confidence limt for MIBF.
4, 80% upper confidence limt for MIBF.

5.’ What confidence do we have that the | ower test val ue has been net or
exceeded?

6. What confidence do we have that the upper test value has not been at-
tai ned?

1. Does the statistical evidence suggest that the reliability is satis-
factory or not?

Comment ary

Because an evaluation is being nade at this point based on what was observed,
we do not have a legitimate random sanple. The true risks in making decisions
based on such an analysis are difficult to determne. They are, in fact,
substantially higher than the ones associated with the original plan. Conse-
quently, the follow ng anal yses are all sonewhat pessimstically biased.

Sol utions

Since the seventh failure has just occurred, this is failure termnated data.

1. Poi nt estimte of 8.
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2.

3.

Applying equation 7.6, we obtain
6= + =21 =814 hrs HrBF

An 80% confidence interval for 6.

a. Use Table 8b, Appendix B to obtain the confidence limt nultiplier
for the case of 7 failures and 80% confidence interval, i.e., 90%

upper and lower confidence [imts. Note we are using Table 8b
because the test is failure term nated.

6, = multiplier (8) = (2.797)(8.14) = 14.63 hrs. MBF

6, = multiplier (8) = (0.665)(8.14) = 5.41 hrs. MIBF

We are therefore 80% confident that
5.41 < 6 < 14.63 hrs. MIBF
b. Usi ng inequality 7.9b, we find, for a = 0. 20,
> 2T <8< 2T
Xa/2 . 2r X1-0/2,2r

Using Appendix B, Table 5 for X val ues:

114 114

< <
21.07 — e—-7.79

W are 80% confident that
5.41 < 8 < 14.63 hrs MIBF

An 80% lower confidence Iimt for 8.

a. Use Table 8b, Appendix B to find the multiplier for an 80% | ower
confidence limt with 7 failures.

. = multiplier (8) = (0.771)(8.14) = 6.28 hrs. MBF
Therefore, we are 80% confi dent that

8 > 6.28 hrs. MIBF

b. Using inequality 7.10b, we find
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Usi ng Appendix B, Table 5 for the X val ue,

114
%> 1515

W are 80% confident that
6 > 6. 28 hrs MIBF

4, An 80% upper confidence Iimt for 8.

d.

5. What

we find

Use Table 8b, Appendix B to find the nultiplier for an 80% upper

confidence Iimt wth 7 failures.

8, = multiplier (8) = (1.479)(8.14) =

Therefore, we are 80% confident that
8 < 12.04 hrs. MIBF
Using inequality 7.11, we find
2T

2
1-a,2r

6 <
X
Using Appendix B, Table 5 for the X val ue,

114
9.47

0o <

W are 80% confident that
8 < 12.04 hrs MIBF

confi dence do we have that 6 > 507

Usi ng equation 7.12b, we find

2

xa,Zr - 2T/8L
2 = 2(57)/50 = 2.28
Xa,14 - ST

12.04 hrs. MIBF

we obtain

Sear ching Appendi x B, Table 5in the row | abeled 14 for a value of
2.28, we find that we are beyond the end of the table, and a >
0. 995. The confidence is 100(1-a)%, 100(1-0.995)% or |less than

0.5%.
We are less than 0.5% confident that

6 > 50 hrs MIBF
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b. Usi ng equation 7.13b, we find

(-1 (T/BL)k e (T/8)
g = Z 'K|
k=0 '

wher e

T/GL =57/50 = 1.14and r -1 =7 -1 = 6.

Sol ving equation 7.13b, we find a = 0.9998.

W are 0.02% confident that & > 50 hours MTBHF.

6. What confidence do we have that 6 < 1007
a. Using equation 7.14, we find
2 _2(57) _

X1-4,14 = 100 - l-14

Searching Appendix B, Table 5 in the row | abeled 14 for a val ue of
1.14, we find that we are well beyond the end of the table, and 1-a
21.0. The confidence is 100(1-0)% 100(1.0)% or essentially 100%
We are essentially 100% confident that
§ < 100 hrs MIBF
b. Using equation 7.15, we find

k e” (T/GU)

wher e

T/BU =0.527and r -1 =7 -1=6

Solving equation 7.15, we find 1-a = 0.99999.
We are essentially 100% confident that

6 < 100 hrs MIBF

7. Does the reliability appear satisfactory?

Since we have essentially Ok confidence that the [ower test value is net or
exceeded, and since we have essentially 100% confidence that the upper test
value is not net, there is overwhel ming evidence that the reliability is not

satisfactory , even taking into consideration the fact that the analysis my be
somewhat pessimstically biased.
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In this case, the evidence is so strong that we can even state that we are
99. 98% confident that 6 < 50 hrs MIBF, though, ordinarily, upper limt state-
ments are associated with the upper test value, and lower linmt statenents are
associated wth the | ower test val ue.

Comment ary

Test plan XIIC from Appendix B, Table 6 required a test duration of 940 hours
to achieve true producer’s and consunmer’s risks of 0.096 and 0.106, re-

spectively. Since the system appears to be “failing mserably,” the user has
chosen to stop testing after 57 hours. No doubt this is a w se decision from
an econom ¢ standpoint. However, the user should be fully cognizant that the
ri sks associated with his abnormally termnated test are not 0.096 and o. 106,

nor are they the ones advertised in the preceding conputations. The calcula-
tion of the true risks is well beyond the scope of this work.
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